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Abstract

Background

Although the X chromosome is the second largest bovine chromosome rsnamnkthe X
chromosome are not used for genomic prediction in some countries and pogullithis

study, we presented a method for computing genomic relationships usthgoXosome

markers, investigated the accuracy of imputation from a lowitgef®¥) to the 54K SNF
(single nucleotide polymorphism) panel, and compared the accuracyahgepredictior
with and without using X chromosome markers.

Methods

The impact of considering X chromosome markers on prediction accuracy wesedsseing
data from Nordic Holstein bulls and different sets of SNPsth@b4K SNPs for referen
and test animals, (b) SNPs imputed from the 7K to the 54K SNP foairtelst animals, (g
SNPs imputed from the 7K to the 54K panel for half of the raterenimals, and (d) the 7

SNP panel for all animals. Beagle and Findhap were used for ingout&BLUP (genomi¢

best linear unbiased prediction) models with or without X chromosoankems and with g
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without a residual polygenic effect were used to predict gentn@eding values for 15
traits.

Results

Averaged over the two imputation datasets, correlation coefficietweée imputed and true
genotypes for autosomal markers, pseudo-autosomal markers, and fit-spadkers were
0.971, 0.831 and 0.935 when using Findhap, and 0.983, 0.856 and 0.937 when using Beagle.
Estimated reliabilities of genomic predictions based on the implatiedets using Findhap|or

Beagle were very close to those using the real 54K data. Gernmetliction using a
markers gave slightly higher reliabilities than predictiontheut X chromosome markers.
Based on our data which included only bulls, usirtg matrix that accounted for sex-linkgd
relationships did not improve prediction, compared witB matrix that did not account for
sex-linked relationships. A model that included a polygenic effechalidecover the loss of
prediction accuracy from exclusion of X chromosome markers.

Conclusions

The results from this study suggest that markers on the X olsmme contribute to accuracy
of genomic predictions and should be used for routine genomic evaluation.

Background

According to the UMD 3.1 assembly, chromosome X is the second tlaigesnosome in
the bovine genome [1]. A total of 1128 annotated genes have been reported Xn
chromosome in the ENSEMBL version 72 [2]. However, markers oiX tbtlieromosome are
not used for genomic prediction in some countries and populations. Previoustic N
genomic evaluations used X chromosome markers for genomic predictions in NordicdRed
Jersey populations but not in the Holstein population because markersXchh@mosome
were not included in the EuroGenomics project [3].

In mammals, inheritance of chromosome X differs from inheritahe@tosomes. In cattle, a
sire passes its X chromosome to all its daughters but neusrdonis. Consequently, a male
inherits a copy of the X chromosome from its mother only, whienaale inherits one copy
of the X chromosome from its father and one copy from its mothieerefore, the
relationships caused by the X chromosome are different for matefemales. Furthermore,
a small region of the X chromosome, called the pseudo-autosomal r@@fm) is
homologous to the Y chromosome and is inherited in an autosome-likerfasthis
increases the complexity of the genetic relationships betwebwduals based on the X
chromosome. Moreover, in genomic prediction of dairy cattle, deregtqeeofs (DRP),
daughter yield deviations (DYD) and estimated breeding values XEBY/ usually used as
response variables. These variables are predicted using a modeich a pedigree-based
relationship matrix is constructed based on inheritance of autosbmadition, the density
of markers on the X chromosome is markedly lower than that on theagssn the current
SNP (single nucleotide polymorphism) chips [4,5]. These charaateristay reduce the
impact of X chromosome markers on accuracy of genomic predictioncaiid be the
reason why they are not used for genomic prediction in some countries and populations.



Based on the characteristics of the X chromosome, it can be hypethehat X
chromosome markers can contribute to the accuracy of genomic meslicbut will
generally have a smaller impact than autosomal markers. Moyegeeomic prediction
using a genomic relationship matrix that takes sex-linked inheatéor X-specific markers
into account will probably perform better than using a genomidorktip matrix that does
not distinguish between autosomal and X-specific markers. In additicause marker
density is lower on the X chromosome, imputation of X chromosome maria@rde less
accurate than that of autosomal markers. When genomic prediatepgrformed using data
from SNP chips with different densities, genotypes of SNPs alisentlow-density chips
are usually inferred (imputed) from the higher density chipsrefbee, it is necessary to
investigate the accuracy of imputation of markers on the X chromosoaorder to perform
genomic prediction using these markers. However, so far thereeay few reports on the
imputation accuracy of X chromosome markers [6] and on their contnibtdi accuracy of
genomic predictions [7].

The objectives of this study were (i) to investigate the acgua imputing missing
genotypes on the X chromosome, (i) to demonstrate a method tdatal@a genomic
relationship matrix which correctly accounts for genetic i@hahips with regard to markers
on the X chromosome, and (iii) to compare the accuracy of genondcioras with and
without X chromosome information using different models and different scenari@strbat
Nordic Holstein cattle were used to address these objectives.

Methods

Data

The data used in this analysis consisted of 5643 progeny-tested Kiidiein bulls born
from 1974 to 2010. The data did not include cows since the number of NordieiHaows
available as reference animals was insufficient for thesegmte analysis. Animals were
genotyped with the Illumina Bovine SNP50 BeadChip [4]. In order to image the
accuracy of imputation for markers on the X chromosome, low-de(idity marker data
were created from the SNP50 BeadChip marker data by maskingmnhdhat are absent
from the lllumina BovineLD BeadChip [5]. The Bovine SNP50 BeadChip (abouj 84K
the BovineLD BeadChip (about 7K) marker data were edited by regpowarkers with a
minor allele frequency (MAF) lower than 0.01, an average GenQGat $ower than 0.60, or
an unknown location in UMD 3.1 [1]. After editing, 44 141 markers remaingbeirb4K
data, and 6699 markers in the LD data. The numbers of markelsbée/ain the autosomes
and on the X chromosome are in Table 1.

Table 1Number of SNPs used after editing (MAF > 0.01, average GC score > 0.60)

Marker data Autosomes X chromosome
PAR® X-specific

54K 43 314 133 694

LD (7K) 6458 25 188

@ PAR: pseudo-autosomal region on the X chromosome.

The bulls were divided into a reference population and a test populatiordiagy to birth
date, i.e., 3995 bulls born before January 1 2005 constituted the reference populdtthe
remaining 1648 bulls constituted the test population. Four sets of dedaused to validate



accuracies of genotype imputation and genomic prediction: (1) 54K aléanimals had
marker data from the 54K chip; (2) IMP_test: for the test amintaé 54K marker data were
imputed from LD marker data; (3) IMP_O.5ref: for half (randontipsen) of the reference
animals, the 54K marker data were imputed from LD markea, datd (4) LD_real: all
animals had LD marker data without imputation to the 54K marker data.

The phenotypic data for genomic prediction were DRP that wereedefiom the Nordic
genetic evaluations of January 2013. Fifteen traits included in thdid\botal Merit index
(http://'www.nordicebv.info) were analyzed. DRP with reliabilitiesver than 10% for
animals in the reference data and lower than 20% for anim#e itest data were deleted.
The number of animals with phenotypic information differed betwedts tbeecause the
number of bulls with published EBV differed between traits. The nunabeanimals
available for genomic prediction and the heritability (provided loydi Cattle Genetic
Evaluation) for each trait are in Table 2.

Table 2Number of animals in the reference data and the test data, and heritaliyi of
the traits studied

Traits Reference data Test data Heritability
Milk 3943 1159 0.39
Fat 3943 1159 0.39
Protein 3943 1159 0.39
Growth 3451 1351 0.30
Fertility 3975 1158 0.04
Birth index 3988 1642 0.06
Calving index 3986 1239 0.03
Udder health 3987 1204 0.04
Other diseases 3961 1050 0.02
Body conformation 3823 1156 0.30
Feet and legs 3864 1150 0.10
Udder conformation 3866 1156 0.25
Milking ability 3832 1155 0.26
Temperament 3856 1142 0.13
Longevity 3943 817 0.10
Average 3891 1180 0.19

Imputation methods

For datasets IMP_test and IMP_0.5ref, the LD marker data wegreteah to the 54K data
using two programs: Beagle version 3.3.1 [8] and Findhap version 2 gld uses
population information and a hidden Markov model to impute missing genotypdbap is
a fast program that imputes missing genotypes using bothyfamdl population information
and takes the inheritance pattern of the X chromosome into accountioféevehen using
Findhap, markers on the PAR of the X chromosome were treated asmaaltavarkers,
while the rest were treated as X-specific markers. ThR RAs approximately identified
based on the region of the X chromosome where markers had a sabgteoyportion of
heterozygous genotypes (H%) in the genotyped bulls. The startingppasitine region was
determined with the criteria that the H% at a SNP was hitjiaer 5%, and at least five of the
following 10 SNPs with a MAF larger than 0.05 had a H% higher thanTs#PAR stopped



at the end of the X chromosome. For datasets 54K _real and LDspeagdic missing
genotypes (4%) were imputed using Beagle.

Genotypes for the imputed markers (in datasets IMP_test and IMEf)@W&re compared to
their corresponding real genotypes in 54K_real. Accuracy of impntavas measured by the
ratio of the number of falsely imputed alleles to total numbemgiuied alleles, which will
be referred to as allele error rate and the ratio of the nuoflfalsely imputed genotypes to
the total number of imputed genotypes, which will be referred to asty®e error rate, as
well as the correlation between imputed and true genotypes.

Genomic relationship matrix (G matrix) using marker data including X-
specific markers

As presented by VanRaden [10] and Hayes et al. [11], a genomtiomehip matrix G) can
be calculated as:

G=MM'/> 2p,(1-p,),

where elements in columr(m;) of M are 0 - §;, 1 - 2o and 2 - §; for SNP genotypes A1,
AiA; and AA,, respectivelyp, is the frequency of allele Aat SNPj. The G matrix is
calculated based on identity by state (IBS), with centering scaling. Consequently,
elements of th& matrix are approximations of realized proportions of the genomeatbat
identical by descent (IBD) between pairs of individuals [11],clwhinakes thes matrix
analogous to the conventional numerator relationship matrix [10].

The G matrix describes the realized genetic relationships betyaies of individuals at the
autosomal markers. However, genetic relationships between indivatualsrkers on the sex
chromosomes and the autosomes are different. For example, forrsnarkéhe X-specific

region of the X chromosome, the genetic relationship is O betweker fand son,’/;

between mother and son and between father and daughter, 0.50 between miotlaeighter
and between full brothers, 0.75 between full sisters, #pe 050 between full brother and

sister. For autosomal loci, these relationshipsalle an expectation of 0.50. Therefore, sex-
linked inheritance should be considered when ugjdi genomic relationship matrix based
on marker data that include X chromosome markers.

When X-specific markers are treated as autosomatkers the resulting genomic
relationship matrix reflects sex-linked relationshibut on an incorrect scale because males
have one X chromosome while females have two. kamele, the relationship between sire
and son is 0, but the diagonal element for a mal@,iinstead of 1. Consequently, the
covariance structures for males, for females, atdiden males and females differ from each
other.

Let A;O and AO denote genotypes of an X-specific marker in m@esneans null, since
males have only one X chromosome), andAA AA, and AA, denote genotypes in
females. Assuming thati@ in males has the same effect on the performainadrait as M,

in females, genotypes of an X-specific marker carcdded in the same way as autosomal
markers. Thus, genotypes@ and AO of males are coded as 0 and 2, and genotypksg A
ALA, and AA, of females are coded as 0, 1 and 2. In additiefinely as the effect of A
(i.e., allele effect on performance of a traitxpressed as the deviation from the effect of Al,



thus the effect of Al is zerop, as the frequency of Aandqg = 1. The expectation of the
genetic valuey) accounted for by an X-specific marker for a male

H=(gx0+px2)y=2py.
Let x be the genotype code as defined above and asbamhé¢ allele effect is independent

of allele frequency and is additive (i.e., absentaon-additive genetic effect), then the
variance of genetic value?) at an X-specific locus in the population of makes

o’ =Var((x-2p)y)
=Var(x-2p)o;

=[q(0-2p)y + p(2- 2pf |o}
=4pqo,

whereoﬁ is the variance of the random additive allele ffe

For females, the expectation and variance aredime s those for autosomal markers, i.e.

u=2py,
and
o® =2pqg;.

Let m; be the element of matriM for individuali and markey, as defined previously. The
relationship coefficient between ma@nd mald caused by the X-specific marketan then
be calculated as:

Mg = Mymy /4quj .

The relationship coefficient between fema&eand femalel has the same form as for
autosomal markers, i.e.

fa =My /2p0; -
The relationship coefficient between mhland femalé is:
g = ”L,-m;/ 4p;q;2p,q; -

Alternatively, it can be assumed that genotyp® A& males has half the effect of genotype
AiA; in females. Then, the genotypes can be codeceasutinber of copies ofAi.e., 0 and 1
for genotypes A0 and AO of males, 0, 1 and 2 for genotypesA4 AiA; and AA, of
females, respectively. For females, the expectadioth variance accounted for by an X-
specific marker are the same as the above. The®tpan of the genetic value for a male is:



H=(qx0+pxDy=py,

and the variance of the genetic value for males is:

=[q(0- p)’+ p(1- p)’ oy

= poo,
Let m j be the element for individualand markef in the correspondlng’l matrix. Define
m ij = 04 for genotype AO andm | ij = 199; for genotype AO of males, andh’; i = 0-2, 1-2

or 2-2p; for genotypes M1, AiA,, or AA, of females. Thenm'; = my/2 for males, andh ;
=my; for females.

_T_hen, the relationship coefficient between niabind mald caused by the X-specific marker
jis:
fy =M/ p;g; =mym, /4p;q;
the relationship coefficient between femklend femalé is:
o =My /2p,g; =mym; /2p,q; ,
and the relationship coefficient between niadand femalé is:
fe =mwm’y/\/pa,2pa; =mym, /\4pq,2p,q; -
This demonstrates that the two alternate assungpfmmthe effect of the male genotype of

X-specific markers lead to the same relationshigffedent. Thus, theG matrix based on
both autosomal and X chromosome markers can balatd as for autosomal markers, but

elementm; of theM matrix must be divided by/§ if markerj is a X-specific marker and
individuali is a male, i.e.

{mj 0d if jisan X -specificmarker
newm. =

m; else

where ° is the Hadamard product operation, elememtvectoré is 1 if individuali is a
female, and}QE if individual i is a male. To construct thd matrix, when the codes for

Ai1A1, AYA; and AA; are 0, 1 and 2, the X-specific genotypes gDAand AO are coded as
0 and 2.

Genomic prediction models

Genomic predictions based on marker data with aititowt markers on the X chromosome
were carried out using the following GBLUP modehplemented in the DMU package [12]:

(1) G(A): GBLUP with theG matrix built using autosomal markefS,j only:



y=pn+2g,+e;

(2) G(A + X): GBLUP with theG matrix built using all markers and treating X-sfiec
markers as autosomal marke@);

y =p+Zg, +e;

(3) G(A + X): GBLUP with theG matrix built using all markers and accounting thog sex-
linked inheritance of X-specific markerG{),

y=pn+Zg;+e;

(4) G(A) + G(X): GBLUP using both the autosonm@almatrix and the X chromoson@
matrix Gy):

y=pn+Zg,+72g, +e,

(5) G(A) + Pol: model G(A) plus a residual polygesifect:
y=u+Zg,+Zu+e;

(6) G(A + X) + Pol: model G(A + X) plus a residual polygenic effect:
y=u+Zg +Zu+e.

In the above modely, is the vector of DRPy is the interceptg, is the vector of genomic
breeding values accounted for by autosonggds the vector of genomic breeding values
accounted for by the X chromosonmp, is the vector of total genomic breeding values
associated with th& matrix that treats X-specific markers as autosomatkers,g. is the
vector of total genomic breeding values associatigd the G matrix that accounts for X-
specific markers as sex-linked marketsis the incidence matrix relating genomic breeding
values toy, u is the vector of residual polygenic effeck, is the incidence matrix that
associates! with y, ande is the vector of random residuals. Random effaotsassumed
distributed as follows:

9.~ N(©0,G,7; ), 9, ~N(0,Gyo;), 9. ~N(0,G0; ), 9, ~N(O0,G,02 ), u~N(0,A?),
ande~ N(0,Rd?),

whereA is the pedigree-based relationship matrix, Brid a diagonal matrix used to account

for heterogeneous residual variances due to diffesgiabilities of DRP (2..). The diagonal
_ 2
elementi of matrix R was computed a&, :ﬁ. Reliability of DRP was calculated as

2
I’DF{F’

, _ EDC

e =————— Where EDC is the -equivalent daughter contributioand
EDC+/



1= 4 - heritabilty
heritabilty

from the DRP data used in the analyses, using treesponding models. The allele
frequencies used to construct Bematrix were calculated from the current markemadait
the genotyped animals.

[13]. All variances @ , 0, , T, , T, , 0. and 0?) were estimated

In addition to the above analyses, genomic premfistiwere also performed using four
reduced 54K marker datasets. These datasets wigr&lof-2: marker data excluding the
markers on chromosome 2 that has a length sinailtivat of the X chromosome; (2) Non-10:
marker data excluding the markers on chromosomehi¢h is similar to the X chromosome
in terms of number of annotated genes; (3) NonrR2&rker data excluding the markers on
chromosome 26 which is similar to X chromosomeeimis of number of markers; (4) Non-
ran: marker data excluding a random sample of 8arkens (equivalent to the number of
markers available on the X chromosome). Genomidigiiens based on these datasets were
carried out using the GBLUP modgl=p+Zg, +e, whereg; is the vector of genomic

breeding values accounted for by the reduced madkér. TheG matrix used for the
analyses considered sex-linked inheritance for ecsic markers.

Genomic predictions using different marker datasets$ different models were validated by
comparing genomic estimated breeding values (GEBM)DRP for animals in the test data.
GEBV were calculated as the sum of the genomiceéed the residual polygenic effect for
models G(A) + Pol and @A + X) + Pol, and as the sum of the autosomalotféad the X
chromosome effect for model G(A) + G(X). Relialidg of genomic predictions were
estimated as the squared correlation between gerqeilictions and DRP, and then divided
by the average reliability of DRP, based on [14]:

, _ CoV(GEBV,DRP)

GEBV — 2 2 2
O ceevO prel DRP

_ CoV* (GEBV,TBV+residual)

2 2
OcesvOtRY

_ CoV*(GEBV,TBV)

2 2
OcesvO TRy

where TBV is true breeding value. Bias of genomgdprtions was assessed by regression of
DRP on GEBYV [15]. A necessary condition for unbéaggediction is that the regression
coefficient does not deviate significantly from 1.

The log-likelihood ratio statistic (—-2InLR) was st test the difference in goodness of fit
between model G(A) + G(X) and model G(A), and bemwenodel GA + X) + Pol and

model G(A + X). Taking G(A) + G(X) and GA + X) + Pol as alternative model while G(A)
and G(A + X) as null model, the log-likelihood ratio s&ic was calculated as -2InLR =
=2In(likelihood of null model / likelihood of alteative model). The P value of -2InLR was

calculated assuming that -2InLR is asymptotica,mﬁ=1 distributed [16], and calculated
assuming that the asymptotic distribution of -2InisRa 50:50 mixture of(;-, and X, , SO
that P(-2InLR) = O.SPXSM) [17]. Hotelling-Williams’ t-test [18,19] was imeimented to



test the equality of two dependent correlationsr(GEBYV, DRP)) from two models for the
same trait. The log-likelihood ratio test and HimgtWilliams’ t-test were implemented in
the analysis using the 54K_real marker data.

Results

The accuracy of imputation from the 7K to the 54KPSpanel was high (Table 3). Using
Beagle, the allele error rate for autosomal markeesaged over the two datasets (IMP_test
and IMP_0.5ref) was 1.1%. Compared with autosomakers, the allele error rates for X-
specific markers and PAR markers were increased.thyand 7.7%, respectively. The
accuracy of imputation with Findhap was slightlywér than that with Beagle, with an
increase of the allele error rate of about 0.7%afiosomes, 0.3% for X-specific markers,
and 1.5% for PAR markers, averaged over the twasaté. Correlation coefficients between
imputed and true genotypes for autosomal markeseugo-autosomal markers, and X-
specific markers were 0.983, 0.856 and 0.937 wehdde, and 0.971, 0.831 and 0.935 with
Finhap.

Table 3Allele error rate (ERA,%), genotype error rate (ERs,%) and correlation (COR)
between imputed and true genotypes for different $g of markers® in two dataset$
Dataset Method ALL AUTO PAR X
ERA ERc COR ERs ERgz COR ER, ERg COR ERs ERg COR
IMP_test Findhap 1.7 3.3 0.972.7 3.3 0.97410.4 19.1 0.829 3.3 4.1 0.940
Beagle 11 22 0.9821.1 2.1 0.9838.8 1590.858 3.0 3.0 0.941
IMP_0.5ref Findhap 2.0 3.9 0.962.0 3.8 0.96810.3 18.7 0.833 3.8 4.4 0.930
Beagle 12 24 009811.2 23 098289 16.40.854 35 3.9 0.933
& ALL: all markers; AUTO: markers on the autosomes; PARirkers on the pseudo-autosomal
region; X: X-specific markers on the X chromosorfiéMP_test: for the test animals in genomic

prediction, the 54K marker data were imputed from LD madita; IMP_0.5ref: for half (randomly
chosen) of the reference animals, the 54K marker data were imputed @ marker data.

Genotype error rate was nearly twice as large asallele error rate for markers on
autosomes and PAR, but almost the same for X-spagdrkers (Table 3). This was because
animals in the present data were all bulls, thustyge error was in principle equivalent to
the allele error for X-specific markers. The reasona slightly higher genotype error rate
than allele error rate for X-specific markers whattsome genotypes were heterozygous in
the real 54K data (due to typing error) and inithputed data (due to imputation error).

Although animals with LD genotypes in the IMP_tdataset had more ancestors with 54K
genotypes, while animals with LD genotypes in th#°10.5ref dataset had more progeny
with 54K genotypes, these two datasets had sirmdanracies of imputation (Table 3). Allele
error rates were equal to 1.9% with Findhap an@olvdth Beagle, averaged over the two
imputation datasets and calculated from the dataledoover the autosomes and the X
chromosome markers.

As shown in Table 4, for the four datasets, gengpnedictions using all markers gave a
slightly higher reliability than predictions withbmarkers on the X chromosome. Averaged
over the 15 traits, the gain in reliability froming the X chromosome markers was 0.4 to
0.5% points when using models without a residudygemic effect, and 0.3 to 0.4% points
when using models with a residual polygenic effédbdels G(A + X) and GA + X)



resulted in the same reliability of genomic predics, which indicates that @ matrix that
took sex-linked inheritance for X-specific markenso account did not improve genomic
prediction more than & matrix that dealt with X-specific markers as aotaal markers,
possibly because animals in the present data viebelks. In addition, model G(A) + G(X)
did not improve predictions compared to models G(X) and G(A + X), which suggests
that it is reasonable to assume that the effecteeomarkers on the X chromosome and the
autosomes have the same distribution.

Table 4 Reliability (%) of genomic predictions based on foudatasets with or without
X chromosome markers, using different modefsand averaged over 15 traits

Dataset  G(A) G(A+X) GA+X) G(A) +G(X) G(A)+Pol GgA + X) + Pol

54K _real 38.0 385 38.5 38.5 38.9 39.3
IMP_test 379 383 38.3 38.4 38.9 39.2
IMP_0.5ref 37.8 38.3 38.3 38.3 38.8 39.1
LD_real 33.0 335 33.6 33.6 35.5 35.9

854K _real: all animals with marker data from thé5hip; IMP_test: for the test animals in
genomic prediction, the 54K marker data were imgppdtem LD marker data; IMP_0.5ref:
for half (randomly chosen) of the reference animidle 54K marker data were imputed from
LD marker data; LD_real: all animals had LD markiata without extension to the 54K
marker data® G(A): model with aG matrix built using autosomal markers only; G(A ¥ X
model with aG matrix built using all markers and treating X-gfieanarkers as autosomal
markers; G(A + X): model with aG matrix built using all markers and specifying dieked
inheritance of X-specific markers; G(A) + G(X): medvith an autosom& matrix and an X
chromosomés matrix; G(A) + Pol: model G(A) plus a residual ygénic effect; A + X)

+ Pol: model GA + X) plus a residual polygenic effect.

A model that included a residual polygenic effectproved the reliability of predicted
breeding values, with an average increase of ab@&3 points (Table 4). For all scenarios,
the greatest improvement in reliability by incluglia residual polygenic effect in the model
was observed for the traits longevity and otheeakgs. Reliability of GEBV using the LD
genotypes was 5% points lower than when usingdae54K genotypes and applying models
without a polygenic effect, and 3.4% points lowdren applying models with a polygenic
effect. Furthermore, genomic predictions based hen imputed datasets of IMP_test and
IMP_0.5ref were almost as accurate as predictiassdbon the real 54K data.

Regression coefficients of DRP on genomic predigtibased on the real 54K or imputed
54K genotype data ranged from 0.782 to 1.064, éXoepongevity, for which the regression
coefficients ranged from 0.631 to 0.685 (TableAeraged over the 15 traits, the regression
coefficients were slightly closer to 1 with thanthvaut using the X chromosome markers for
prediction. Regression coefficients were the sanmenwusing real versus imputed 54K
genotype data. In addition, models that includedesidual polygenic effect resulted in
regression coefficients considerably closer toahtimodels without a polygenic effect, which
indicates a reduction of prediction bias from imthg polygenic effects. Regression
coefficients deviated more from 1 for genomic pcédns based on LD genotype data than
for predictions using the 54K genotype data, whiaticates a larger prediction bias for the
former. However, when using models with a residpalygenic effect, the regression
coefficients based on LD genotypes were very dosbose based on the 54K genotype data.



Table 5Regression coefficients of deregressed proofs omgenic predictions based on
four dataset$ with or without X chromosome markers, using differet models’ and
averaged over 15 traits

Datasets GA) GA+X) GA+X) GA)+G(X) G(A)+Pol G¢(A+X)+Pol

54K _real 0.881 0.885 0.885 0.885 0.918 0.919
IMP_test 0.881 0.885 0.885 0.885 0.918 0.919
IMP_0.5ref  0.881 0.886 0.885 0.886 0.920 0.922
LD_real 0.834 0.835 0.837 0.838 0.914 0.915

454K _real: all animals with marker data from the 54K cHipl| test: for the test animals in genomic
prediction, the 54K marker data were imputed from LD madita; IMP_0.5ref: for half (randomly
chosen) of the reference animals, the 54K marker data merged from LD marker data; LD _real:
all animals had LD marker data without extension to the 54K mai&i;” G(A): model with aG
matrix built using autosomal markers only; G(A + X): modehvétG matrix built using all markers
and treating X-specific markers as autosomal markef# & X): model with aG matrix built using
all markers and specifying sex-linked inheritance of X-spenifirkers; G(A) + G(X): model with an
autosomeG matrix and an X chromosom® matrix; G(A) + Pol: model G(A) plus a residual
polygenic effect; A + X) + Pol: model (A + X) plus a residual polygenic effect.

Table 6 shows the reliability of genomic predicBowhen excluding one of four selected
chromosomes or when deleting a random sample dterarCompared to excluding the X
chromosome, excluding chromosome 2 (similar to tKechromosome in length),
chromosome 10 (similar to the X chromosome in numbk annotated genes), and
chromosome 26 (similar to the X chromosome in nunabenarkers) led to larger losses in
reliability. Excluding chromosome 10 led to thegkst loss in reliability, while randomly
deleting 827 markers (i.e. the same number of msréie on the X chromosome) led to no
loss in reliability.

Table 6 Reliability (R?% %) of genomic predictions based on the 54K SNPs4B_real)
excluding one chromosome or a random sample of 827arkers, averaged over 15 traits

Chromosome  Chr Number of Number of Number of R? Difference
excluded length genes markers on the markers after from R%,;
map editing

X-Chr 147.8 1128 1176 827 38.0 05
Chr. 2 137.1 1021 2829 2289 37.6 0.9
Chr. 10 104.3 1074 2206 1800 374 1.1
Chr. 26 51.7 437 1116 921 37.8 0.7
Random - - - 827 385 0.0

" Difference from reliability (%) of genomic predictions obid with a model that usedGmatrix
built with all markers and specifying sex-linked inheritance of X-spmeciarkers.

The log likelihood ratio test statistics in Tablandicate that model (G(A) + G(X)) using
both autosomal and X chromosome markers had afismmtly better goodness of fit than
model (G(A)) using only autosomal markers for 13he 15 traits, and that model (& +

X) + Pol) with a residual polygenic effect was sfgantly better than model (GA + X))
without a polygenic effect for 12 traits. As shomnTable 7, the variance accounted for by
the X chromosome was significantly different fronfo® 10 traits, and the variance accounted
for by the residual polygenic effect was significdor 13 traits. On average, the X
chromosome accounted for 1.7% of the total addigeeetic variance, and the residual
polygenic effect for 17.2% of the total additivengéc variance.



Table 7Log likelihood ratio statistics between models anthe variance accounted for by
the X chromosome and by residual polygenic effedbased on the real 54K dataset

Traits Log likelihood ratio Variance (SE) Variance%°
(A + X)IA® (AX +P)IAX"  X-Chr® Pol X-Chr¢ Pol
Milk 13.46 16.62 1.05 (0.48) 14.34(3.74) 09 120
Fat 27.34 8.03 1.41 (0.53) 9.27 (3.51) 1.3 84
Protein 27.07 34.62 1.80 (0.62) 20.54(3.74) 15 173
Growth 0.00 16.87 0.00(0.28) 17.84(4.67) 0.0 135
Fertility 27.59 33.85 5.21(1.66) 42.81(8.19) 3.6 27.9
Birth index 3.93 2.76 0.93(0.68) 9.09(6.14) 08 7.7
Calving index 0.66 0.80 0.73(0.86) 6.51(7.21) 0.7 5.9
Udder health 21.96 18.6 2.44(0.84) 1658 (4.17) 2.7 176
Other diseases 26.05 47.93 6.13 (2.13) 70.01 (11.21) 4.1 404
Body conformation 4.12 5.08 2.71(1.42) 15.82(7.46) 2.2 127
Feet and legs 3.62 0.00 2.16 (1.60) 0.00 (9.97) 15 0.0
Udder conformation 9.60 0.05 2.52 (1.10) 1.34(5.76) 1.8 1.2
Milking ability 9.97 10.40 2.57(1.28) 2366(8.01) 1.2 11.0
Temperament 5.23 22.22 3.36(1.78) 43.94(10.30) 25 2938
Longevity 3.87 118.57 1.07 (0.97) 87.50(9.37) 0.8 53.4
Average 12.10 22.43 227 (1.08) 25.28(6.90) 1.7 17.2

% Log likelihood ratio of model G(A) + G(X) to model G(A), wheBA) was the model with an
autosomalG matrix and G(A) + G(X) was the model including an autos@nenatrix and an X
chromosomes matrix; ° Log likelihood ratio of model @A + X) + Pol to model A + X), where

G(A + X) was the model with & matrix built using all markers and.@ + X) + Pol included also
residual polygenic effecf, Variance accounted by the X chromosome and estimated from model
G(A) + G(X);  Variance of residual polygenic effect and estimated from megda + X) + Pol;®
Variance in proportion to total additive genetic varianc&ignificant at P < 0.05, where P was
calculated as Rﬁle ); ° Significant at B < 0.05, where Pwas calculated as 0.5@%(,:1 ), e.q.,

when P < 0.05, P< 0.025.

Table 8 presents reliabilities of genomic predicsidor each trait using models G(A), G(A) +
G(X) and G(A + X) + Pol, based on the 54K _real dataset amivshthat the contribution of
X chromosome markers to the reliability of genomiedictions differed between traits. An
increase in reliability of around 2% points was eed for fertility and other diseases.
Correspondingly, the variances explained by thenbddmosome were much higher for these
two traits than for the other traits. Longevityahowed a significant benefit of including X
chromosome markers, although the variance accodotdaly the X chromosome was small
for this trait. Averaged over the 15 traits, inchgl the X chromosome improved the
prediction reliability by 0.5% points.



Table 8 Correlation between genomic predictions and deregssed proofs and reliability
of genomic predictions for each trait, based on theeal 54K dataset

Traits Correlation Reliability%
G(A) G(A) + G(X) G4A + X) + Pol G(A) G(A) + G(X) GA + X) + Pol

Milk 0.674 0.676 0.687 48.7 48.9 49.6
Fat 0.663 0.667" 0.670 47.1 47.6 48.0
Protein 0.655 0.657 0.666 45.9 46.2 47.5
Growth 0.665% 0.665 0.668 47.2 47.2 47.6
Fertility 0.526  0.532 0.538 40.7 42.6 435
Birth index 0.517 0.518 0.518 325 32.7 32.7
Calving index 0.452 0.454 0.452 30.3 30.5 30.2
Udder health 0.563 0.568 0.569 39.5 40.1 40.3
Other diseases 0.447 0.459 0.48F 36.3 38.2 41.9
Body conformation 0.480 0.478 0.480 27.6 27.4 27.6
Feet and legs 0.452 0.456 0.457 33.2 33.7 33.9
Udder conformation 0.595 0.598 0.598 44.0 445 44.4
Milking ability 0.647  0.644 0.644 471 474 47.3
Temperament 0.342 0.342 0.348 18.3 18.3 19.0
Longevity 0.463  0.468 0.494 31.1 31.8 35.4
Average 0.542 0.545 0.551 38.0 38.5 39.3

G(A): model with aG matrix built with autosomal markers only; G(A) + G(X): modeith an
autosomes matrix and an X chromosont& matrix; G(A + X) + Pol: model with &6 matrix built
with all markers plus a residual polygenic effétt® Correlations within a trait without common
superscript differed significantly (P < 0.05), according to Hotellingjiavis’ t-test.

The benefit of including polygenic effects into thedel also differed among traits (Table 8).
A significant increase in the reliability of genampredictions from including a residual

polygenic effect was obtained for four traits. Tlaegest improvements were for longevity
(3.6%) and other diseases (3.7%). For these tvitg,tthe variance accounted for by residual
polygenic effect was more than 40% of the totalitadelgenetic variance (Table 7). For the
other traits, the average improvement in predicteiability was 0.3%.

Discussion

This study investigated the accuracy of genotypguiation for markers on the X
chromosome and the impact of including X chromosonagkers on reliability of genomic
predictions. The results showed that averaged twerl5 traits evaluated, including X
chromosome markers improved the reliability of garprediction slightly, ranging from
0.3 to 0.5% points in various datasets and usifigrdnt models. The variance accounted for
by the X chromosome was about 1.7% of the totalitimddgenetic variance. Gains in
reliability from including the X chromosome were akar than observed in a previous study
on USA Holstein cattle by VanRaden et al. [7], wieported an increase in reliability of
1.5%, averaged over nine traits, although the Xmlmsome accounted for only 1% of the
total genetic variance in their study. When theageic model included a residual polygenic
effect, breeding values predicted using marker tlaa included X chromosome markers
were still more accurate than those predicted witho chromosome markers. This means
that a model that includes a residual polygenieatffloes not recover the loss of prediction
accuracy from exclusion of X chromosome markers.



The loss of prediction accuracy from exclusionha X chromosome was smaller than when
an autosome of similar size (chromosome 2), or &ithequivalent number of annotated
genes (chromosome 10), or with an equivalent nurobenarkers (chromosome 26) was
excluded. There are two possible reasons why madkethe X chromosome contribute less
to the reliability of genomic predictions than teakree autosomes. One reason is that the
density of markers on the X chromosome is much tdivan that on autosomes; the average
distance between adjacent markers is about 18thkhe X chromosome and 60 kb on the
autosomes in the 54K marker data. The second resashat markers on the X chromosome
represent weaker relationships between individunatee present data, which consisted only
of males. The impact of genetic relationships betwanimals in the reference and test
datasets on reliability of genomic predictions fest animals has been reported in many
previous studies [11,20-22]. Since the relationdbgpween sires and sons is 0 for the X
chromosome, information of a sire does not directfijuence the son’'s GEBV explained by
the X chromosome. On the contrary, information eira directly influences the son’'s GEBV
explained by the autosomes, as reported in prewstugies that showed that reliability of
GEBYV is about 5 to 10% higher for the test animaigh than without their sires in the
reference population [23,24].

When a random set of 827 markers (i.e. the numbseraokers on the X chromosome) was
excluded from the analysis, there was no loss lialiéty of genomic prediction. This is
explained by the fact that the effects of the reatbwmarkers are in part accounted for by
other markers that are in linkage disequilibriuntnahe removed markers. Therefore, the
loss in prediction reliability from removing a sd#trandomly chosen markers should be much
smaller than the loss caused by removing an ecttir@mosome. In other words, if removing
an entire chromosome leads to a larger loss inigired reliability than removing a set of
randomly chosen markers, this chromosome contsbute the reliability of genomic
prediction due to linkage disequilibrium betweee tharkers and causative genes on this
chromosome. Thus, the fact that we observed aiopeediction reliability when removing
the X chromosome markers but not when removingr@2domly chosen markers confirms
that markers on the X chromosome are in linkageagdigibrium with causative genes on that
chromosome which affect the traits studied.

A G matrix that takes the sex-linked inheritance fosspécific markers into account is
expected to improve genomic prediction when usinghkomosome markers, compared to a
G matrix that deals with X-specific markers as aoitoal markers. However, models G(A +
X) and G(A + X) gave the same reliability of genomic preains, though thé& matrix in
model G(A + X) took the sex-linked inheritance for X-specimarkers into account while
the G matrix in model G(A + X) did not. One reason fbistresult could be that the number
of X-specific markers was too small to obtain aclenprovement in genomic predictions by
correctly taking the sex-linked inheritance intoc@amt when calculating th& matrix.
Another reason is that all animals in the currestadvere males, for which ignoring sex-
linked inheritance in the calculation of ti@ matrix could have a small impact on
relationship coefficients. Currently, in many caigg and cattle populations, a large number
of females are genotyped to increase the sizeeotdference population or to obtain their
GEBYV [25,26]. When genomic data that include infatibn from males and females and the
markers on the X chromosome are used; anatrix that appropriately accounts for sex-
linked relationships is expected to be importamt genomic prediction using the GBLUP
model.



Reliabilities of genomic predictions based on tmeputed datasets of IMP_test and
IMP_0.5ref were similar to those of predictions dzh®n the real 54K data. This result is
inconsistent with previous studies on genomic mtezhs using imputed 54K genotype data
from a 3K marker panel in Nordic and French [274l &erman Holstein populations [28], in
which, on average, each 1% of imputation allel®rerate resulted in a loss in prediction
reliability of 1.3% points. The lower loss in rddifity in our study could be due to the fact
that the density of the LD chip (7K) used here wai€e that of the 3K chip. Even when
using the 7K genotype data without imputation, tekability of genomic predictions was
only 5.0% points lower than the reliability of pretibns using the real 54K genotype data.
Thus, an allele error rate of 1.2% in imputatiamirthe 7K to the 54K marker data may have
very little influence on the reliability of genompredictions. Similarly, a previous study
(Peipei Ma et al., personal communication) inveddd the impact of imputation from the
54K to the 777K SNP panel by using a combined 7v&frence population and reported
that an improvement of the imputation error rate ddyout 2% did not result in a
corresponding improvement in the reliability of gamc predictions. These results suggest
that the impact of imputation accuracy on genomediction not only depends on imputation
accuracy, but also on the number of markers inaWer density panel.

A model that included a residual polygenic effestreased the reliability of genomic
predictions by 0.8% points on average across th&difs. This was larger than the 0.3%
point increase reported by Gao et al. [29] fordame population. However, the present study
estimated residual polygenic variance for each, tvahile in Gao et al. a constant ratio of
residual polygenic variance to total additive genefiriance was used for all traits. The
estimated ratios of residual polygenic varianceotal additive genetic variance ranged from
0 to 53.4% among the 15 traits studied here. Thesdts indicate that trait-specific weights
on residual polygenic effects should be used inogea prediction, instead of a constant
weight across traits. Furthermore, a model thdudex a residual polygenic effect reduced
prediction bias, which was in line with the resukported by Liu et al. [30] and Gao et al.
[29]. In practical genetic evaluations, GEBV areiall blended with the EBV from the
conventional pedigree-based BLUP model. It is resmgs to investigate whether the
predicted genomic breeding values that includesadwal polygenic effect result in double
counting when blending them with traditional EBWI3 could occur because the residual
polygenic effect is already included in the GEBWdathe blending procedure uses the
residual polygenic effect once again.

Accuracy of imputation from the 7K to the 54K marlganel was high (allele error rate of
1.2% using Beagle), which was in line with previstigdies [5,31]. Imputation accuracy was
lower for markers on the X chromosome than for raeglon autosomes, which is probably
mainly due to the fact that the density of markees lower on the X chromosome than on
autosomes. The average interval between adjacekersaon the X chromosome was three
times as large as that on autosomes in the 54K dathwas nearly twice as large in the 7K
data. Moreover, markers in the PAR had much lowsgutation accuracy than X-specific
markers, although the markers on the PAR were aiooe as dense as X-specific markers
in both the 7K and the 54K data. This can be erplhiby the fact that the PAR is a small
segment (about 11 Mbp based on our estimation)siwtould reduce imputation efficiency.
Another explanation could be that X-specific maskeray have lower recombination rates
than PAR markers, since crossovers occur only inafes. Poor imputation accuracy for
PAR markers was also reported by Johnston et hin[e imputation from the 3K to the
54K panel.



Conclusions

Although the accuracy of genotype imputation forkees on the X chromosome was lower
than that for autosomal markers, the accuracy pttation from the 7K to the 54K panel for
markers on the X chromosome was still high in trerdit Holstein population. Including
markers on the X chromosome slightly increased riimbility of genomic predictions.
Based on our data which included only bulls, usin@ matrix that took the sex-linked
inheritance of X-specific markers into account dat improve prediction compared to&
matrix that did not. Although the improvement ire tineliability of genomic prediction
obtained from the X chromosome is small, includihghromosome markers does not result
in any extra cost. Therefore, it is recommendedide markers on the X chromosome for
genomic evaluation.
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