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Abstract 

Background 

Although the X chromosome is the second largest bovine chromosome, markers on the X 
chromosome are not used for genomic prediction in some countries and populations. In this 
study, we presented a method for computing genomic relationships using X chromosome 
markers, investigated the accuracy of imputation from a low density (7K) to the 54K SNP 
(single nucleotide polymorphism) panel, and compared the accuracy of genomic prediction 
with and without using X chromosome markers. 

Methods 

The impact of considering X chromosome markers on prediction accuracy was assessed using 
data from Nordic Holstein bulls and different sets of SNPs: (a) the 54K SNPs for reference 
and test animals, (b) SNPs imputed from the 7K to the 54K SNP panel for test animals, (c) 
SNPs imputed from the 7K to the 54K panel for half of the reference animals, and (d) the 7K 
SNP panel for all animals. Beagle and Findhap were used for imputation. GBLUP (genomic 
best linear unbiased prediction) models with or without X chromosome markers and with or 



without a residual polygenic effect were used to predict genomic breeding values for 15 
traits. 

Results 

Averaged over the two imputation datasets, correlation coefficients between imputed and true 
genotypes for autosomal markers, pseudo-autosomal markers, and X-specific markers were 
0.971, 0.831 and 0.935 when using Findhap, and 0.983, 0.856 and 0.937 when using Beagle. 
Estimated reliabilities of genomic predictions based on the imputed datasets using Findhap or 
Beagle were very close to those using the real 54K data. Genomic prediction using all 
markers gave slightly higher reliabilities than predictions without X chromosome markers. 
Based on our data which included only bulls, using a G matrix that accounted for sex-linked 
relationships did not improve prediction, compared with a G matrix that did not account for 
sex-linked relationships. A model that included a polygenic effect did not recover the loss of 
prediction accuracy from exclusion of X chromosome markers. 

Conclusions 

The results from this study suggest that markers on the X chromosome contribute to accuracy 
of genomic predictions and should be used for routine genomic evaluation. 

Background 

According to the UMD 3.1 assembly, chromosome X is the second largest chromosome in 
the bovine genome [1]. A total of 1128 annotated genes have been reported on the X 
chromosome in the ENSEMBL version 72 [2]. However, markers on the X chromosome are 
not used for genomic prediction in some countries and populations. Previously, Nordic 
genomic evaluations used X chromosome markers for genomic predictions in Nordic Red and 
Jersey populations but not in the Holstein population because markers on the X chromosome 
were not included in the EuroGenomics project [3]. 

In mammals, inheritance of chromosome X differs from inheritance of autosomes. In cattle, a 
sire passes its X chromosome to all its daughters but never to its sons. Consequently, a male 
inherits a copy of the X chromosome from its mother only, while a female inherits one copy 
of the X chromosome from its father and one copy from its mother. Therefore, the 
relationships caused by the X chromosome are different for males and females. Furthermore, 
a small region of the X chromosome, called the pseudo-autosomal region (PAR) is 
homologous to the Y chromosome and is inherited in an autosome-like fashion. This 
increases the complexity of the genetic relationships between individuals based on the X 
chromosome. Moreover, in genomic prediction of dairy cattle, deregressed proofs (DRP), 
daughter yield deviations (DYD) and estimated breeding values (EBV) are usually used as 
response variables. These variables are predicted using a model in which a pedigree-based 
relationship matrix is constructed based on inheritance of autosomes. In addition, the density 
of markers on the X chromosome is markedly lower than that on the autosomes in the current 
SNP (single nucleotide polymorphism) chips [4,5]. These characteristics may reduce the 
impact of X chromosome markers on accuracy of genomic prediction, and could be the 
reason why they are not used for genomic prediction in some countries and populations. 



Based on the characteristics of the X chromosome, it can be hypothesized that X 
chromosome markers can contribute to the accuracy of genomic predictions, but will 
generally have a smaller impact than autosomal markers. Moreover, genomic prediction 
using a genomic relationship matrix that takes sex-linked inheritance for X-specific markers 
into account will probably perform better than using a genomic relationship matrix that does 
not distinguish between autosomal and X-specific markers. In addition, because marker 
density is lower on the X chromosome, imputation of X chromosome markers may be less 
accurate than that of autosomal markers. When genomic predictions are performed using data 
from SNP chips with different densities, genotypes of SNPs absent from low-density chips 
are usually inferred (imputed) from the higher density chips. Therefore, it is necessary to 
investigate the accuracy of imputation of markers on the X chromosome in order to perform 
genomic prediction using these markers. However, so far there are very few reports on the 
imputation accuracy of X chromosome markers [6] and on their contribution to accuracy of 
genomic predictions [7]. 

The objectives of this study were (i) to investigate the accuracy of imputing missing 
genotypes on the X chromosome, (ii) to demonstrate a method to calculate a genomic 
relationship matrix which correctly accounts for genetic relationships with regard to markers 
on the X chromosome, and (iii) to compare the accuracy of genomic predictions with and 
without X chromosome information using different models and different scenarios. Data from 
Nordic Holstein cattle were used to address these objectives. 

Methods 

Data 

The data used in this analysis consisted of 5643 progeny-tested Nordic Holstein bulls born 
from 1974 to 2010. The data did not include cows since the number of Nordic Holstein cows 
available as reference animals was insufficient for the present analysis. Animals were 
genotyped with the Illumina Bovine SNP50 BeadChip [4]. In order to investigate the 
accuracy of imputation for markers on the X chromosome, low-density (LD) marker data 
were created from the SNP50 BeadChip marker data by masking markers that are absent 
from the Illumina BovineLD BeadChip [5]. The Bovine SNP50 BeadChip (about 54K) and 
the BovineLD BeadChip (about 7K) marker data were edited by removing markers with a 
minor allele frequency (MAF) lower than 0.01, an average GenCall score lower than 0.60, or 
an unknown location in UMD 3.1 [1]. After editing, 44 141 markers remained in the 54K 
data, and 6699 markers in the LD data. The numbers of markers available on the autosomes 
and on the X chromosome are in Table 1. 

Table 1 Number of SNPs used after editing (MAF > 0.01, average GC score > 0.60) 
Marker data  Autosomes X chromosome 

PARa X-specific 
54K 43 314 133 694 
LD (7K) 6458 25 188 
a PAR: pseudo-autosomal region on the X chromosome. 

The bulls were divided into a reference population and a test population according to birth 
date, i.e., 3995 bulls born before January 1 2005 constituted the reference population and the 
remaining 1648 bulls constituted the test population. Four sets of data were used to validate 



accuracies of genotype imputation and genomic prediction: (1) 54K_real: all animals had 
marker data from the 54K chip; (2) IMP_test: for the test animals, the 54K marker data were 
imputed from LD marker data; (3) IMP_0.5ref: for half (randomly chosen) of the reference 
animals, the 54K marker data were imputed from LD marker data, and (4) LD_real: all 
animals had LD marker data without imputation to the 54K marker data. 

The phenotypic data for genomic prediction were DRP that were derived from the Nordic 
genetic evaluations of January 2013. Fifteen traits included in the Nordic Total Merit index 
(http://www.nordicebv.info) were analyzed. DRP with reliabilities lower than 10% for 
animals in the reference data and lower than 20% for animals in the test data were deleted. 
The number of animals with phenotypic information differed between traits because the 
number of bulls with published EBV differed between traits. The number of animals 
available for genomic prediction and the heritability (provided by Nordic Cattle Genetic 
Evaluation) for each trait are in Table 2. 

Table 2 Number of animals in the reference data and the test data, and heritability of 
the traits studied 
Traits  Reference data Test data Heritability  
Milk 3943 1159 0.39 
Fat 3943 1159 0.39 
Protein 3943 1159 0.39 
Growth 3451 1351 0.30 
Fertility 3975 1158 0.04 
Birth index 3988 1642 0.06 
Calving index 3986 1239 0.03 
Udder health 3987 1204 0.04 
Other diseases 3961 1050 0.02 
Body conformation 3823 1156 0.30 
Feet and legs 3864 1150 0.10 
Udder conformation 3866 1156 0.25 
Milking ability 3832 1155 0.26 
Temperament 3856 1142 0.13 
Longevity 3943 817 0.10 
Average 3891 1180 0.19 

Imputation methods 

For datasets IMP_test and IMP_0.5ref, the LD marker data were imputed to the 54K data 
using two programs: Beagle version 3.3.1 [8] and Findhap version 2 [9]. Beagle uses 
population information and a hidden Markov model to impute missing genotypes. Findhap is 
a fast program that imputes missing genotypes using both family and population information 
and takes the inheritance pattern of the X chromosome into account. Therefore, when using 
Findhap, markers on the PAR of the X chromosome were treated as autosomal markers, 
while the rest were treated as X-specific markers. The PAR was approximately identified 
based on the region of the X chromosome where markers had a substantial proportion of 
heterozygous genotypes (H%) in the genotyped bulls. The starting position of the region was 
determined with the criteria that the H% at a SNP was higher than 5%, and at least five of the 
following 10 SNPs with a MAF larger than 0.05 had a H% higher than 5%. The PAR stopped 



at the end of the X chromosome. For datasets 54K_real and LD_real, sporadic missing 
genotypes (4%) were imputed using Beagle. 

Genotypes for the imputed markers (in datasets IMP_test and IMP_0.5ref) were compared to 
their corresponding real genotypes in 54K_real. Accuracy of imputation was measured by the 
ratio of the number of falsely imputed alleles to total number of imputed alleles, which will 
be referred to as allele error rate and the ratio of the number of falsely imputed genotypes to 
the total number of imputed genotypes, which will be referred to as genotype error rate, as 
well as the correlation between imputed and true genotypes. 

Genomic relationship matrix (G matrix) using marker data including X-
specific markers 

As presented by VanRaden [10] and Hayes et al. [11], a genomic relationship matrix (G) can 
be calculated as: 

∑ −= )1(2/ jj ppMM'G , 
 

where elements in column j (mij) of M  are 0 - 2pj, 1 - 2pj and 2 - 2pj for SNP genotypes A1A1, 
A1A2 and A2A2, respectively, pj is the frequency of allele A2 at SNP j. The G matrix is 
calculated based on identity by state (IBS), with centering and scaling. Consequently, 
elements of the G matrix are approximations of realized proportions of the genome that are 
identical by descent (IBD) between pairs of individuals [11], which makes the G matrix 
analogous to the conventional numerator relationship matrix [10]. 

The G matrix describes the realized genetic relationships between pairs of individuals at the 
autosomal markers. However, genetic relationships between individuals at markers on the sex 
chromosomes and the autosomes are different. For example, for markers on the X-specific 
region of the X chromosome, the genetic relationship is 0 between father and son, 2

1  

between mother and son and between father and daughter, 0.50 between mother and daughter 
and between full brothers, 0.75 between full sisters, and 50.02

1 ×  between full brother and 

sister. For autosomal loci, these relationships all have an expectation of 0.50. Therefore, sex-
linked inheritance should be considered when building a genomic relationship matrix based 
on marker data that include X chromosome markers. 

When X-specific markers are treated as autosomal markers, the resulting genomic 
relationship matrix reflects sex-linked relationships, but on an incorrect scale because males 
have one X chromosome while females have two. For example, the relationship between sire 
and son is 0, but the diagonal element for a male is 2, instead of 1. Consequently, the 
covariance structures for males, for females, and between males and females differ from each 
other. 

Let A1O and A2O denote genotypes of an X-specific marker in males (O means null, since 
males have only one X chromosome), and A1A1, A2A2 and A2A2 denote genotypes in 
females. Assuming that AiO in males has the same effect on the performance of a trait as AiA i 
in females, genotypes of an X-specific marker can be coded in the same way as autosomal 
markers. Thus, genotypes A1O and A2O of males are coded as 0 and 2, and genotypes A1A1, 
A2A2 and A2A2 of females are coded as 0, 1 and 2. In addition, define γ as the effect of A2 
(i.e., allele effect on performance of a trait is expressed as the deviation from the effect of A1, 



thus the effect of A1 is zero), p as the frequency of A2, and q = 1-p. The expectation of the 
genetic value (µ) accounted for by an X-specific marker for a male is: 

γγµ ppq 2)20( =×+×= . 
 

Let x be the genotype code as defined above and assume that the allele effect is independent 
of allele frequency and is additive (i.e., absence of non-additive genetic effect), then the 
variance of genetic value (σ2) at an X-specific locus in the population of males is: 
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where 2
γσ  is the variance of the random additive allele effect γ. 

For females, the expectation and variance are the same as those for autosomal markers, i.e. 

2pµ γ= , 
 

and 

22 2 γσσ pq= . 
 

Let mij be the element of matrix M  for individual i and marker j, as defined previously. The 
relationship coefficient between male k and male l caused by the X-specific marker j can then 
be calculated as: 

jjljkjkl qpmmr 4= . 
 

The relationship coefficient between female k and female l has the same form as for 
autosomal markers, i.e. 

jjljkjkl qpmmr 2= . 
 

The relationship coefficient between male k and female l is: 

jjjjljkjkl qpqpmmr 24= . 
 

Alternatively, it can be assumed that genotype AiO in males has half the effect of genotype 
A iA i in females. Then, the genotypes can be coded as the number of copies of A2, i.e., 0 and 1 
for genotypes A1O and A2O of males, 0, 1 and 2 for genotypes A1A1, A1A2 and A2A2 of 
females, respectively. For females, the expectation and variance accounted for by an X-
specific marker are the same as the above. The expectation of the genetic value for a male is: 



γγµ ppq =×+×= )10( , 
 

and the variance of the genetic value for males is: 

2 2 2 2
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Let m*
ij be the element for individual i and marker j in the corresponding M  matrix. Define 

m*
ij = 0-p for genotype A1O and m*

ij = 1-pj for genotype A2O of males, and m*
ij = 0-2pj, 1-2pj 

or 2-2pj for genotypes A1A1, A1A2, or A2A2 of females. Then, m*
ij = mij/2 for males, and m*

ij 
= mij for females. 

Then, the relationship coefficient between male k and male l caused by the X-specific marker 
j is: 

jjljkjjjljkjkl qpmmqpmmr 4** == , 
 

the relationship coefficient between female k and female l is: 

jjljkjjjljkjkl qpmmqpmmr 22** == , 
 

and the relationship coefficient between male k and female l is: 

jjjjljkjjjjjljkjkl qpqpmmqpqpmmr 242** == . 
 

This demonstrates that the two alternate assumptions for the effect of the male genotype of 
X-specific markers lead to the same relationship coefficient. Thus, the G matrix based on 
both autosomal and X chromosome markers can be calculated as for autosomal markers, but 

element mij of the M  matrix must be divided by 2  if marker j is a X-specific marker and 
individual i is a male, i.e. 
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where ° is the Hadamard product operation, element i in vector δ is 1 if individual i is a 
female, and 2

1  if individual i is a male. To construct the M  matrix, when the codes for 

A1A1, A2A2 and A2A2 are 0, 1 and 2, the X-specific genotypes of A1O and A2O are coded as 
0 and 2. 

Genomic prediction models 

Genomic predictions based on marker data with and without markers on the X chromosome 
were carried out using the following GBLUP models implemented in the DMU package [12]: 

(1) G(A): GBLUP with the G matrix built using autosomal markers (Ga) only: 



eZgy ++= aµ ; 
 

(2) G(A + X): GBLUP with the G matrix built using all markers and treating X-specific 
markers as autosomal markers (G0): 

eZgy ++= 0µ ; 
 

(3) Gc(A + X): GBLUP with the G matrix built using all markers and accounting for the sex-
linked inheritance of X-specific markers (Gc), 

eZgy ++= cµ ; 
 

(4) G(A) + G(X): GBLUP using both the autosomal G matrix and the X chromosome G 
matrix (Gx): 

eZgZgy x +++= aµ ; 
 

(5) G(A) + Pol: model G(A) plus a residual polygenic effect: 

euZZgy +++= uaµ ; 
 

(6) Gc(A + X) + Pol: model Gc(A + X) plus a residual polygenic effect: 

euZZgy +++= ucµ . 
 

In the above models, y is the vector of DRP, µ is the intercept, ga is the vector of genomic 
breeding values accounted for by autosomes, gx is the vector of genomic breeding values 
accounted for by the X chromosome, g0 is the vector of total genomic breeding values 
associated with the G matrix that treats X-specific markers as autosomal markers, gc is the 
vector of total genomic breeding values associated with the G matrix that accounts for X-
specific markers as sex-linked markers, Z is the incidence matrix relating genomic breeding 
values to y, u is the vector of residual polygenic effects, Zu is the incidence matrix that 
associates u with y, and e is the vector of random residuals. Random effects are assumed 
distributed as follows: 

),(N~ 2
aa agσG0g , ),(N~ 2

00 0gσG0g , ),(N~ 2

cgcc σG0g , ),(N~ 2

xgxx σG0g , ),(N~ 2
uσA0u , 

and ),(N~ 2
eσR0e , 

where A is the pedigree-based relationship matrix, and R is a diagonal matrix used to account 
for heterogeneous residual variances due to different reliabilities of DRP ( 2

DRPr ). The diagonal 

element i of matrix R was computed as 2

21
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r
R

−= . Reliability of DRP was calculated as 
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2  where EDC is the equivalent daughter contribution and 



tyheritabili

tyheritabili4 −=λ  [13]. All variances ( 2

agσ , 2

xgσ , 2

0gσ , 2

cgσ , 2
uσ  and 2

eσ ) were estimated 

from the DRP data used in the analyses, using the corresponding models. The allele 
frequencies used to construct the G matrix were calculated from the current marker data of 
the genotyped animals. 

In addition to the above analyses, genomic predictions were also performed using four 
reduced 54K marker datasets. These datasets were: (1) Non-2: marker data excluding the 
markers on chromosome 2 that has a length similar to that of the X chromosome; (2) Non-10: 
marker data excluding the markers on chromosome 10 which is similar to the X chromosome 
in terms of number of annotated genes; (3) Non-26: marker data excluding the markers on 
chromosome 26 which is similar to X chromosome in terms of number of markers; (4) Non-
ran: marker data excluding a random sample of 827 markers (equivalent to the number of 
markers available on the X chromosome). Genomic predictions based on these datasets were 
carried out using the GBLUP model eZgy ++= rµ , where gr is the vector of genomic 
breeding values accounted for by the reduced marker data. The G matrix used for the 
analyses considered sex-linked inheritance for X-specific markers. 

Genomic predictions using different marker datasets and different models were validated by 
comparing genomic estimated breeding values (GEBV) and DRP for animals in the test data. 
GEBV were calculated as the sum of the genomic effect and the residual polygenic effect for 
models G(A) + Pol and Gc(A + X) + Pol, and as the sum of the autosomal effect and the X 
chromosome effect for model G(A) + G(X). Reliabilities of genomic predictions were 
estimated as the squared correlation between genomic predictions and DRP, and then divided 
by the average reliability of DRP, based on [14]: 

2
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GEBV 2 2 2
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where TBV is true breeding value. Bias of genomic predictions was assessed by regression of 
DRP on GEBV [15]. A necessary condition for unbiased prediction is that the regression 
coefficient does not deviate significantly from 1. 

The log-likelihood ratio statistic (−2lnLR) was used to test the difference in goodness of fit 
between model G(A) + G(X) and model G(A), and between model Gc(A + X) + Pol and 
model Gc(A + X). Taking G(A) + G(X) and Gc(A + X) + Pol as alternative model while G(A) 
and Gc(A + X) as null model, the log-likelihood ratio statistic was calculated as -2lnLR = 
−2ln(likelihood of null model / likelihood of alternative model). The P value of -2lnLR was 

calculated assuming that -2lnLR is asymptotically 2
1=dfχ  distributed [16], and calculated 

assuming that the asymptotic distribution of -2lnLR is a 50:50 mixture of 2
0=dfχ  and 2

1=dfχ , so 

that P(−2lnLR) = 0.5P ( 2
1=dfχ ) [17]. Hotelling-Williams’ t-test [18,19] was implemented to 



test the equality of two dependent correlations (Cor(GEBV, DRP)) from two models for the 
same trait. The log-likelihood ratio test and Hotelling-Williams’ t-test were implemented in 
the analysis using the 54K_real marker data. 

Results 

The accuracy of imputation from the 7K to the 54K SNP panel was high (Table 3). Using 
Beagle, the allele error rate for autosomal markers averaged over the two datasets (IMP_test 
and IMP_0.5ref) was 1.1%. Compared with autosomal markers, the allele error rates for X-
specific markers and PAR markers were increased by 2.1 and 7.7%, respectively. The 
accuracy of imputation with Findhap was slightly lower than that with Beagle, with an 
increase of the allele error rate of about 0.7% for autosomes, 0.3% for X-specific markers, 
and 1.5% for PAR markers, averaged over the two datasets. Correlation coefficients between 
imputed and true genotypes for autosomal markers, pseudo-autosomal markers, and X-
specific markers were 0.983, 0.856 and 0.937 with Beagle, and 0.971, 0.831 and 0.935 with 
Finhap. 

Table 3 Allele error rate (ERA,%), genotype error rate (ERG,%) and correlation (COR) 
between imputed and true genotypes for different sets of markersa in two datasetsb 
Dataset Method ALL  AUTO  PAR X 

ERA ERG COR ERA ERG COR ERA ERG COR ERA ERG COR 
IMP_test Findhap 1.7 3.3 0.972 1.7 3.3 0.974 10.4 19.1 0.829 3.3 4.1 0.940 
 Beagle 1.1 2.2 0.982 1.1 2.1 0.983 8.8 15.9 0.858 3.0 3.0 0.941 
IMP_0.5ref Findhap 2.0 3.9 0.967 2.0 3.8 0.968 10.3 18.7 0.833 3.8 4.4 0.930 
 Beagle 1.2 2.4 0.981 1.2 2.3 0.982 8.9 16.4 0.854 3.5 3.9 0.933 
a ALL: all markers; AUTO: markers on the autosomes; PAR: markers on the pseudo-autosomal 
region; X: X-specific markers on the X chromosome; b IMP_test: for the test animals in genomic 
prediction, the 54K marker data were imputed from LD marker data; IMP_0.5ref: for half (randomly 
chosen) of the reference animals, the 54K marker data were imputed from LD marker data. 

Genotype error rate was nearly twice as large as the allele error rate for markers on 
autosomes and PAR, but almost the same for X-specific markers (Table 3). This was because 
animals in the present data were all bulls, thus genotype error was in principle equivalent to 
the allele error for X-specific markers. The reason for a slightly higher genotype error rate 
than allele error rate for X-specific markers was that some genotypes were heterozygous in 
the real 54K data (due to typing error) and in the imputed data (due to imputation error). 

Although animals with LD genotypes in the IMP_test dataset had more ancestors with 54K 
genotypes, while animals with LD genotypes in the IMP_0.5ref dataset had more progeny 
with 54K genotypes, these two datasets had similar accuracies of imputation (Table 3). Allele 
error rates were equal to 1.9% with Findhap and 1.2% with Beagle, averaged over the two 
imputation datasets and calculated from the data pooled over the autosomes and the X 
chromosome markers. 

As shown in Table 4, for the four datasets, genomic predictions using all markers gave a 
slightly higher reliability than predictions without markers on the X chromosome. Averaged 
over the 15 traits, the gain in reliability from using the X chromosome markers was 0.4 to 
0.5% points when using models without a residual polygenic effect, and 0.3 to 0.4% points 
when using models with a residual polygenic effect. Models G(A + X) and Gc(A + X) 



resulted in the same reliability of genomic predictions, which indicates that a G matrix that 
took sex-linked inheritance for X-specific markers into account did not improve genomic 
prediction more than a G matrix that dealt with X-specific markers as autosomal markers, 
possibly because animals in the present data were all bulls. In addition, model G(A) + G(X) 
did not improve predictions compared to models G(A + X) and Gc(A + X), which suggests 
that it is reasonable to assume that the effects of the markers on the X chromosome and the 
autosomes have the same distribution. 

Table 4 Reliability (%) of genomic predictions based on four datasetsa with or without 
X chromosome markers, using different modelsb and averaged over 15 traits 
Dataset G(A) G(A + X) Gc(A + X) G(A) + G(X) G(A) + Pol Gc(A + X) + Pol 
54K_real 38.0 38.5 38.5 38.5 38.9 39.3 
IMP_test 37.9 38.3 38.3 38.4 38.9 39.2 
IMP_0.5ref 37.8 38.3 38.3 38.3 38.8 39.1 
LD_real 33.0 33.5 33.6 33.6 35.5 35.9 
a 54K_real: all animals with marker data from the 54K chip; IMP_test: for the test animals in 
genomic prediction, the 54K marker data were imputed from LD marker data; IMP_0.5ref: 
for half (randomly chosen) of the reference animals, the 54K marker data were imputed from 
LD marker data; LD_real: all animals had LD marker data without extension to the 54K 
marker data; b G(A): model with a G matrix built using autosomal markers only; G(A + X): 
model with a G matrix built using all markers and treating X-specific markers as autosomal 
markers; Gc(A + X): model with a G matrix built using all markers and specifying sex-linked 
inheritance of X-specific markers; G(A) + G(X): model with an autosome G matrix and an X 
chromosome G matrix; G(A) + Pol: model G(A) plus a residual polygenic effect; Gc(A + X) 
+ Pol: model Gc(A + X) plus a residual polygenic effect. 

A model that included a residual polygenic effect improved the reliability of predicted 
breeding values, with an average increase of about 0.8% points (Table 4). For all scenarios, 
the greatest improvement in reliability by including a residual polygenic effect in the model 
was observed for the traits longevity and other diseases. Reliability of GEBV using the LD 
genotypes was 5% points lower than when using the real 54K genotypes and applying models 
without a polygenic effect, and 3.4% points lower when applying models with a polygenic 
effect. Furthermore, genomic predictions based on the imputed datasets of IMP_test and 
IMP_0.5ref were almost as accurate as predictions based on the real 54K data. 

Regression coefficients of DRP on genomic predictions based on the real 54K or imputed 
54K genotype data ranged from 0.782 to 1.064, except for longevity, for which the regression 
coefficients ranged from 0.631 to 0.685 (Table 5). Averaged over the 15 traits, the regression 
coefficients were slightly closer to 1 with than without using the X chromosome markers for 
prediction. Regression coefficients were the same when using real versus imputed 54K 
genotype data. In addition, models that included a residual polygenic effect resulted in 
regression coefficients considerably closer to 1 than models without a polygenic effect, which 
indicates a reduction of prediction bias from including polygenic effects. Regression 
coefficients deviated more from 1 for genomic predictions based on LD genotype data than 
for predictions using the 54K genotype data, which indicates a larger prediction bias for the 
former. However, when using models with a residual polygenic effect, the regression 
coefficients based on LD genotypes were very close to those based on the 54K genotype data. 



Table 5 Regression coefficients of deregressed proofs on genomic predictions based on 
four datasetsa with or without X chromosome markers, using different modelsb and 
averaged over 15 traits 
Datasets G(A) G(A + X) Gc(A + X) G(A) + G(X) G(A) + Pol Gc(A + X) + Pol 
54K_real 0.881 0.885 0.885 0.885 0.918 0.919 
IMP_test 0.881 0.885 0.885 0.885 0.918 0.919 
IMP_0.5ref 0.881 0.886 0.885 0.886 0.920 0.922 
LD_real 0.834 0.835 0.837 0.838 0.914 0.915 
a 54K_real: all animals with marker data from the 54K chip; IMP_test: for the test animals in genomic 
prediction, the 54K marker data were imputed from LD marker data; IMP_0.5ref: for half (randomly 
chosen) of the reference animals, the 54K marker data were imputed from LD marker data; LD_real: 
all animals had LD marker data without extension to the 54K marker data; b G(A): model with a G 
matrix built using autosomal markers only; G(A + X): model with a G matrix built using all markers 
and treating X-specific markers as autosomal markers; Gc(A + X): model with a G matrix built using 
all markers and specifying sex-linked inheritance of X-specific markers; G(A) + G(X): model with an 
autosome G matrix and an X chromosome G matrix; G(A) + Pol: model G(A) plus a residual 
polygenic effect; Gc(A + X) + Pol: model Gc(A + X) plus a residual polygenic effect. 

Table 6 shows the reliability of genomic predictions when excluding one of four selected 
chromosomes or when deleting a random sample of markers. Compared to excluding the X 
chromosome, excluding chromosome 2 (similar to the X chromosome in length), 
chromosome 10 (similar to the X chromosome in number of annotated genes), and 
chromosome 26 (similar to the X chromosome in number of markers) led to larger losses in 
reliability. Excluding chromosome 10 led to the largest loss in reliability, while randomly 
deleting 827 markers (i.e. the same number of markers as on the X chromosome) led to no 
loss in reliability. 

Table 6 Reliability (R 2,%) of genomic predictions based on the 54K SNPs (54K_real) 
excluding one chromosome or a random sample of 827 markers, averaged over 15 traits 
Chromosome 
excluded 

Chr 
length 

Number of 
genes 

Number of 
markers on the 
map 

Number of 
markers after 
editing 

R2 Difference 
from R2

full
* 

X-Chr 147.8 1128 1176 827 38.0 0.5 
Chr. 2 137.1 1021 2829 2289 37.6 0.9 
Chr. 10 104.3 1074 2206 1800 37.4 1.1 
Chr. 26 51.7 437 1116 921 37.8 0.7 
Random - - - 827 38.5 0.0 
* Difference from reliability (%) of genomic predictions obtained with a model that used a G matrix 
built with all markers and specifying sex-linked inheritance of X-specific markers. 

The log likelihood ratio test statistics in Table 7 indicate that model (G(A) + G(X)) using 
both autosomal and X chromosome markers had a significantly better goodness of fit than 
model (G(A)) using only autosomal markers for 13 of the 15 traits, and that model (Gc(A + 
X) + Pol) with a residual polygenic effect was significantly better than model (Gc(A + X)) 
without a polygenic effect for 12 traits. As shown in Table 7, the variance accounted for by 
the X chromosome was significantly different from 0 for 10 traits, and the variance accounted 
for by the residual polygenic effect was significant for 13 traits. On average, the X 
chromosome accounted for 1.7% of the total additive genetic variance, and the residual 
polygenic effect for 17.2% of the total additive genetic variance. 



Table 7 Log likelihood ratio statistics between models and the variance accounted for by 
the X chromosome and by residual polygenic effect, based on the real 54K dataset 
Traits  Log likelihood ratio  Variance (SE) Variance%e 

(A + X)/Aa (AX + P)/AXb X-Chr c Pold X-Chr c Pold 
Milk 13.46* 16.62* 1.05 (0.48)* 14.34 (3.74)* 0.9 12.0 
Fat 27.34* 8.03* 1.41 (0.53)* 9.27 (3.51)* 1.3 8.4 
Protein 27.07* 34.62* 1.80 (0.62)* 20.54 (3.74)* 1.5 17.3 
Growth 0.00 16.87* 0.00 (0.28) 17.84 (4.67)* 0.0 13.5 
Fertility 27.59* 33.85* 5.21 (1.66)* 42.81 (8.19)* 3.6 27.9 
Birth index 3.93* 2.76¤ 0.93 (0.68) 9.09 (6.14)* 0.8 7.7 
Calving index 0.66 0.80 0.73 (0.86) 6.51 (7.21)* 0.7 5.9 
Udder health 21.96* 18.6* 2.44 (0.84)* 16.58 (4.17)* 2.7 17.6 
Other diseases 26.05* 47.93* 6.13 (2.13)* 70.01 (11.21)* 4.1 40.4 
Body conformation 4.12* 5.08* 2.71 (1.42)* 15.82 (7.46)* 2.2 12.7 
Feet and legs 3.62¤ 0.00 2.16 (1.60) 0.00 (9.97) 1.5 0.0 
Udder conformation 9.60* 0.05 2.52 (1.10)* 1.34 (5.76) 1.8 1.2 
Milking ability 9.97* 10.40* 2.57 (1.28)* 23.66 (8.01)* 1.2 11.0 
Temperament 5.23* 22.22* 3.36 (1.78)* 43.94 (10.30)* 2.5 29.8 
Longevity 3.87* 118.57* 1.07 (0.97) 87.50 (9.37)* 0.8 53.4 
Average 12.10 22.43 2.27 (1.08) 25.28 (6.90) 1.7 17.2 
a Log likelihood ratio of model G(A) + G(X) to model G(A), where G(A) was the model with an 
autosomal G matrix and G(A) + G(X) was the model including an autosome G matrix and an X 
chromosome G matrix; b Log likelihood ratio of model Gc(A + X) + Pol to model Gc(A + X), where 
Gc(A + X) was the model with a G matrix built using all markers and Gc(A + X) + Pol included also 
residual polygenic effect; c Variance accounted by the X chromosome and estimated from model 
G(A) + G(X); d Variance of residual polygenic effect and estimated from model Gc(A + X) + Pol; e 
Variance in proportion to total additive genetic variance; * Significant at P < 0.05, where P was 
calculated as P(�����

�  ); ¤ Significant at Pm < 0.05, where Pm was calculated as 0.5P(�����
�  ), e.g., 

when P < 0.05, Pm < 0.025. 

Table 8 presents reliabilities of genomic predictions for each trait using models G(A), G(A) + 
G(X) and Gc(A + X) + Pol, based on the 54K_real dataset and shows that the contribution of 
X chromosome markers to the reliability of genomic predictions differed between traits. An 
increase in reliability of around 2% points was observed for fertility and other diseases. 
Correspondingly, the variances explained by the X chromosome were much higher for these 
two traits than for the other traits. Longevity also showed a significant benefit of including X 
chromosome markers, although the variance accounted for by the X chromosome was small 
for this trait. Averaged over the 15 traits, including the X chromosome improved the 
prediction reliability by 0.5% points. 

  



Table 8 Correlation between genomic predictions and deregressed proofs and reliability 
of genomic predictions for each trait, based on the real 54K dataset 
Traits  Correlation  Reliability%  

G(A) G(A) + G(X) Gc(A + X) + Pol G(A) G(A) + G(X) Gc(A + X) + Pol 
Milk 0.674a 0.676a 0.681b 48.7 48.9 49.6 
Fat 0.663a 0.667ab 0.670b 47.1 47.6 48.0 
Protein 0.655a 0.657a 0.666b 45.9 46.2 47.5 
Growth 0.665a 0.665a 0.668a 47.2 47.2 47.6 
Fertility 0.520a 0.532b 0.538b 40.7 42.6 43.5 
Birth index 0.517a 0.518a 0.518a 32.5 32.7 32.7 
Calving index 0.452a 0.454a 0.452a 30.3 30.5 30.2 
Udder health 0.563a 0.568a 0.569a 39.5 40.1 40.3 
Other diseases 0.447a 0.459b 0.481c 36.3 38.2 41.9 
Body conformation 0.480a 0.478a 0.480a 27.6 27.4 27.6 
Feet and legs 0.452a 0.456a 0.457a 33.2 33.7 33.9 
Udder conformation 0.595a 0.598a 0.598a 44.0 44.5 44.4 
Milking ability 0.642a 0.644a 0.644a 47.1 47.4 47.3 
Temperament 0.342a 0.342a 0.348a 18.3 18.3 19.0 
Longevity 0.463a 0.468b 0.494c 31.1 31.8 35.4 
Average 0.542 0.545 0.551 38.0 38.5 39.3 
G(A): model with a G matrix built with autosomal markers only; G(A) + G(X): model with an 
autosome G matrix and an X chromosome G matrix; Gc(A + X) + Pol: model with a G matrix built 
with all markers plus a residual polygenic effect; a,b,c Correlations within a trait without common 
superscript differed significantly (P < 0.05), according to Hotelling-Williams’ t-test. 

The benefit of including polygenic effects into the model also differed among traits (Table 8). 
A significant increase in the reliability of genomic predictions from including a residual 
polygenic effect was obtained for four traits. The largest improvements were for longevity 
(3.6%) and other diseases (3.7%). For these two traits, the variance accounted for by residual 
polygenic effect was more than 40% of the total additive genetic variance (Table 7). For the 
other traits, the average improvement in prediction reliability was 0.3%. 

Discussion 

This study investigated the accuracy of genotype imputation for markers on the X 
chromosome and the impact of including X chromosome markers on reliability of genomic 
predictions. The results showed that averaged over the 15 traits evaluated, including X 
chromosome markers improved the reliability of genomic prediction slightly, ranging from 
0.3 to 0.5% points in various datasets and using different models. The variance accounted for 
by the X chromosome was about 1.7% of the total additive genetic variance. Gains in 
reliability from including the X chromosome were smaller than observed in a previous study 
on USA Holstein cattle by VanRaden et al. [7], who reported an increase in reliability of 
1.5%, averaged over nine traits, although the X chromosome accounted for only 1% of the 
total genetic variance in their study. When the genomic model included a residual polygenic 
effect, breeding values predicted using marker data that included X chromosome markers 
were still more accurate than those predicted without X chromosome markers. This means 
that a model that includes a residual polygenic effect does not recover the loss of prediction 
accuracy from exclusion of X chromosome markers. 



The loss of prediction accuracy from exclusion of the X chromosome was smaller than when 
an autosome of similar size (chromosome 2), or with an equivalent number of annotated 
genes (chromosome 10), or with an equivalent number of markers (chromosome 26) was 
excluded. There are two possible reasons why markers on the X chromosome contribute less 
to the reliability of genomic predictions than these three autosomes. One reason is that the 
density of markers on the X chromosome is much lower than that on autosomes; the average 
distance between adjacent markers is about 180 kb on the X chromosome and 60 kb on the 
autosomes in the 54K marker data. The second reason is that markers on the X chromosome 
represent weaker relationships between individuals in the present data, which consisted only 
of males. The impact of genetic relationships between animals in the reference and test 
datasets on reliability of genomic predictions for test animals has been reported in many 
previous studies [11,20-22]. Since the relationship between sires and sons is 0 for the X 
chromosome, information of a sire does not directly influence the son’s GEBV explained by 
the X chromosome. On the contrary, information of a sire directly influences the son’s GEBV 
explained by the autosomes, as reported in previous studies that showed that reliability of 
GEBV is about 5 to 10% higher for the test animals with than without their sires in the 
reference population [23,24]. 

When a random set of 827 markers (i.e. the number of markers on the X chromosome) was 
excluded from the analysis, there was no loss in reliability of genomic prediction. This is 
explained by the fact that the effects of the removed markers are in part accounted for by 
other markers that are in linkage disequilibrium with the removed markers. Therefore, the 
loss in prediction reliability from removing a set of randomly chosen markers should be much 
smaller than the loss caused by removing an entire chromosome. In other words, if removing 
an entire chromosome leads to a larger loss in prediction reliability than removing a set of 
randomly chosen markers, this chromosome contributes to the reliability of genomic 
prediction due to linkage disequilibrium between the markers and causative genes on this 
chromosome. Thus, the fact that we observed a loss in prediction reliability when removing 
the X chromosome markers but not when removing 827 randomly chosen markers confirms 
that markers on the X chromosome are in linkage disequilibrium with causative genes on that 
chromosome which affect the traits studied. 

A G matrix that takes the sex-linked inheritance for X-specific markers into account is 
expected to improve genomic prediction when using X chromosome markers, compared to a 
G matrix that deals with X-specific markers as autosomal markers. However, models G(A + 
X) and Gc(A + X) gave the same reliability of genomic predictions, though the G matrix in 
model Gc(A + X) took the sex-linked inheritance for X-specific markers into account while 
the G matrix in model G(A + X) did not. One reason for this result could be that the number 
of X-specific markers was too small to obtain a clear improvement in genomic predictions by 
correctly taking the sex-linked inheritance into account when calculating the G matrix. 
Another reason is that all animals in the current data were males, for which ignoring sex-
linked inheritance in the calculation of the G matrix could have a small impact on 
relationship coefficients. Currently, in many countries and cattle populations, a large number 
of females are genotyped to increase the size of the reference population or to obtain their 
GEBV [25,26]. When genomic data that include information from males and females and the 
markers on the X chromosome are used, a G matrix that appropriately accounts for sex-
linked relationships is expected to be important for genomic prediction using the GBLUP 
model. 



Reliabilities of genomic predictions based on the imputed datasets of IMP_test and 
IMP_0.5ref were similar to those of predictions based on the real 54K data. This result is 
inconsistent with previous studies on genomic predictions using imputed 54K genotype data 
from a 3K marker panel in Nordic and French [27] and German Holstein populations [28], in 
which, on average, each 1% of imputation allele error rate resulted in a loss in prediction 
reliability of 1.3% points. The lower loss in reliability in our study could be due to the fact 
that the density of the LD chip (7K) used here was twice that of the 3K chip. Even when 
using the 7K genotype data without imputation, the reliability of genomic predictions was 
only 5.0% points lower than the reliability of predictions using the real 54K genotype data. 
Thus, an allele error rate of 1.2% in imputation from the 7K to the 54K marker data may have 
very little influence on the reliability of genomic predictions. Similarly, a previous study 
(Peipei Ma et al., personal communication) investigated the impact of imputation from the 
54K to the 777K SNP panel by using a combined 777K reference population and reported 
that an improvement of the imputation error rate by about 2% did not result in a 
corresponding improvement in the reliability of genomic predictions. These results suggest 
that the impact of imputation accuracy on genomic prediction not only depends on imputation 
accuracy, but also on the number of markers in the lower density panel. 

A model that included a residual polygenic effect increased the reliability of genomic 
predictions by 0.8% points on average across the 15 traits. This was larger than the 0.3% 
point increase reported by Gao et al. [29] for the same population. However, the present study 
estimated residual polygenic variance for each trait, while in Gao et al. a constant ratio of 
residual polygenic variance to total additive genetic variance was used for all traits. The 
estimated ratios of residual polygenic variance to total additive genetic variance ranged from 
0 to 53.4% among the 15 traits studied here. These results indicate that trait-specific weights 
on residual polygenic effects should be used in genomic prediction, instead of a constant 
weight across traits. Furthermore, a model that included a residual polygenic effect reduced 
prediction bias, which was in line with the results reported by Liu et al. [30] and Gao et al. 
[29]. In practical genetic evaluations, GEBV are usually blended with the EBV from the 
conventional pedigree-based BLUP model. It is necessary to investigate whether the 
predicted genomic breeding values that include a residual polygenic effect result in double 
counting when blending them with traditional EBV. This could occur because the residual 
polygenic effect is already included in the GEBV, and the blending procedure uses the 
residual polygenic effect once again. 

Accuracy of imputation from the 7K to the 54K marker panel was high (allele error rate of 
1.2% using Beagle), which was in line with previous studies [5,31]. Imputation accuracy was 
lower for markers on the X chromosome than for markers on autosomes, which is probably 
mainly due to the fact that the density of markers was lower on the X chromosome than on 
autosomes. The average interval between adjacent markers on the X chromosome was three 
times as large as that on autosomes in the 54K data, and was nearly twice as large in the 7K 
data. Moreover, markers in the PAR had much lower imputation accuracy than X-specific 
markers, although the markers on the PAR were about twice as dense as X-specific markers 
in both the 7K and the 54K data. This can be explained by the fact that the PAR is a small 
segment (about 11 Mbp based on our estimation), which could reduce imputation efficiency. 
Another explanation could be that X-specific markers may have lower recombination rates 
than PAR markers, since crossovers occur only in females. Poor imputation accuracy for 
PAR markers was also reported by Johnston et al. [6] in the imputation from the 3K to the 
54K panel. 



Conclusions 

Although the accuracy of genotype imputation for markers on the X chromosome was lower 
than that for autosomal markers, the accuracy of imputation from the 7K to the 54K panel for 
markers on the X chromosome was still high in the Nordic Holstein population. Including 
markers on the X chromosome slightly increased the reliability of genomic predictions. 
Based on our data which included only bulls, using a G matrix that took the sex-linked 
inheritance of X-specific markers into account did not improve prediction compared to a G 
matrix that did not. Although the improvement in the reliability of genomic prediction 
obtained from the X chromosome is small, including X chromosome markers does not result 
in any extra cost. Therefore, it is recommended to use markers on the X chromosome for 
genomic evaluation. 
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